
User Space Memory Management for Post-copy Migration

Mike Rapoport
IBM Research – Haifa

rapoport@il.ibm.com

Joel Nider
IBM Research – Haifa
joeln@il.ibm.com

CCS Concepts
•Software and its engineering → Memory manage-
ment; Virtual machines; Cloud computing;

Keywords
Operating Systems; Memory management, Virtualization,
Containers

1. PROBLEM
Post-copy migration allows reduction of application down-

time and reduces overall network bandwidth used for appli-
cation migration [4]. Migration can be used to help optimize
several aspects of operations such as power efficiency[3]. The
userfault technology recently introduced to the Linux ker-
nel allows post-copy migration of virtual machines. How-
ever, this technology is missing essential features required
for post-copy migration of Linux containers.

2. POST-COPY VM MIGRATION
The userfault technology [1] recently introduced into the

Linux kernel allows a user space application to process page
faults. It may process its own page faults (cooperative user-
fault), or on behalf of another process (non-cooperative user-
fault). The KVM hypervisor utilizes the cooperative user-
fault technology to implement post-copy migration of virtual
machines. In the KVM solution, a virtual machine can be
migrated to a destination host without copying the memory
upfront. The guest execution is restarted on the destination
host and each memory access causes a page fault. These
page faults are delivered by the userfault to the user-space
part of KVM hypervisor (qemu), which requests the required
memory page from the source node hypervisor, copies the re-
ceived page into the guest memory and resumes the guest
execution.

3. POST-COPY CONTAINER MIGRATION

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SYSTOR ’17 Haifa, Israel
c© 2017 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-5035-8/17/05.

DOI: http://dx.doi.org/10.1145/3078468.3078490

A similar technique may be used for post-copy migration
of Linux containers. However, unlike a virtual machine,
there is no hypervisor that has complete control over those
processes. Therefore, container migration uses an external
tool called CRIU [2] that collects the information necessary
to migrate a container, including its memory dump, and
then restores the container process tree on the destination
host. Since CRIU is an independent process and does not
share address space with the restored process it must use
non-cooperative userfault. In this mode it is necessary not
only to track process memory accesses but also changes to
the process virtual memory layout.

In Linux, there are several system calls that allow modi-
fication of the virtual memory layout of a process. For in-
stance, mremap() system call changes the virtual address of
certain memory range inside the application address space,
or madvise(MADV DONTNEED) drops pages from a vir-
tual address range and any subsequent accesses to this range
will generate zeros.

We implement extensions for userfault technology that
add hooks to these system calls and provide the means for
the monitor application to take an appropriate action and
adjust the non-cooperative process virtual memory layout
accordingly.

Another system call that was modified to support non-
cooperative userfaults is fork(). When a new process is cre-
ated using the fork() system call, its virtual memory layout
is identical to the memory layout of its parent. The user-
fault monitor has to detect the creation of the new processes
so it will be able to fill their memory with the appropriate
contents.

4. ACKNOWLEDGMENTS
This project has received funding from the European Union’s

Horizon 2020 research and innovation programme under grant
agreement No 688386.

5. REFERENCES
[1] A. Arcangeli and D. A. Gilbert. Memory

externalization with userfaultd. In KVM Forum, 2014.

[2] CRIU - Checkpoint Restore in Userspace.
https://criu.org.

[3] J. Nider and M. Rapoport. Cross-isa container
migration. In Proceedings of the 9th ACM International
on Systems and Storage Conference, SYSTOR ’16,
pages 24:1–24:1, New York, NY, USA, 2016. ACM.

[4] E. Zayas. Attacking the process migration bottleneck.
SIGOPS Oper. Syst. Rev., 21(5):13–24, Nov. 1987.


