
POSTER: User Space Memory Management for Post-copy
Migration

Mike Rapoport
IBM Research – Haifa

rapoport@il.ibm.com

Joel Nider
IBM Research – Haifa
joeln@il.ibm.com

Categories and Subject Descriptors
D.4.7 [Operating Systems]: Organization and Design -
Distributed systems

Keywords
Operating Systems; Memory management

1. PROBLEM
Post-copy migration allows reduction of application down-

time and reduces overall network bandwidth used for appli-
cation migration [3]. The userfault technology recently in-
troduced to the Linux kernel allows post-copy migration of
virtual machines. However, this technology is missing es-
sential features required for post-copy migration of Linux
containers.

2. POST-COPY VM MIGRATION
The userfault technology [1] recently introduced into the

Linux kernel allows a user space application to process page
faults. It may process its own page faults (cooperative user-
fault), or on behalf of another process (non-cooperative user-
fault). The KVM hypervisor utilizes the cooperative user-
fault technology to implement post-copy migration of virtual
machines. In the KVM solution, a virtual machine can be
migrated to a destination host without copying the memory
upfront. The guest execution is restarted on the destination
host and each memory access causes a page fault. These
page faults are delivered by the userfault to the user-space
part of KVM hypervisor (qemu), which requests the required
memory page from the source node hypervisor, copies the re-
ceived page into the guest memory and resumes the guest
execution.

3. POST-COPY CONTAINER MIGRATION
A similar technique may be used for post-copy migration

of Linux containers. However, unlike a virtual machine,
there is no hypervisor that has complete control over those

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SYSTOR ’17 Haifa, Israel
c© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 123-4567-24-567/08/06. . . $15.00

DOI: 10.475/123 4

processes. Therefore, container migration uses an external
tool called CRIU [2] that collects the information necessary
to migrate a container, including it’s memory dump, and
then restores the container process tree on the destination
host. Since CRIU is an independent process and does not
share address space with the restored process it must use
non-cooperative userfault. In this mode it is necessary not
only to track process memory accesses but also changes to
the process virtual memory layout.

In Linux, there are several system calls that allow modi-
fication of the virtual memory layout of a process. For in-
stance, mremap() system call changes the virtual address of
certain memory range inside the application address space,
or madvise(MADV DONTNEED) drops pages from a vir-
tual address range and any subsequent accesses to this range
will generate zeros.

We implement extensions for userfault technology that
add hooks to these system calls and provide the means for
the monitor application to take an appropriate action and
adjust the non-cooperative process virtual memory layout
accordingly.

Another system call that was modified to support non-
cooperative userfaults is fork(). When a new process is cre-
ated using the fork() system call, its virtual memory layout
is identical to the memory layout of its parent. The user-
fault monitor has to detect the creation of the new processes
so it will be able to fill their memory with the appropriate
contents.

4. ACKNOWLEDGMENTS
Acknowledgments are for the camera-ready version only.

Please do not include them in your submission.

5. REFERENCES
[1] A. Arcangeli and D. A. Gilbert. Memory

externalization with userfaultd. In KVM Forum, 2014.

[2] CRIU - Checkpoint Restore in Userspace.
https://criu.org.

[3] E. Zayas. Attacking the process migration bottleneck.
SIGOPS Oper. Syst. Rev., 21(5):13–24, Nov. 1987.

